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1 Preface

When planning a daily power generation at  
a hydropower plant, the dam influent rate, dam- 
designated water level, maintenance discharge rate, 
and many other restrictive conditions must be taken 
into consideration. This work is extremely compli-
cated. If a future influent rate can be predicted with 
high accuracy, control of dam water level and dis-
charge rate becomes easy, and stable and efficient 
plant operation can be carried out. 

In order to achieve accurate prediction of future 
dam influent rate, however, it is necessary to estab-
lish a physical model with which future meteorolog-
ical data, the shape of river systems, amount of 
snow fall, and other critical information can be accu-
rately grasped. Such a practice is challenging. For 
example, although an outstanding physical model 
can be established for a single river system, another 
physical model must be established from the begin-
ning when another river system is added to this proj-
ect. 

Meanwhile, if a machine learning model is 
made to learn the relationship among meteorologi-
cal data, past influent rate data, and future influent 
data, a highly accurate prediction of the dam influ-
ent rate becomes possible without direct consider-
ation of physical characteristics of river systems. 

This paper introduces a high-accuracy dam influent 
rate prediction approach by using a machine learn-
ing model. 

2 Outline of Hydropower Generation 
Business Operations

Fig. 1 shows an outline of business operations 
at a dam-type hydropower plant. An example of 
power generating operations for 24 hours to be offi-
cially notified to a power company at 9:00 every day 
is presented. Essentials for the calculation of power 
generation plan are shown below. 
(1) The dam water level is maintained within the 
upper and lower limits of the specified water level. 
(2) For the protection of ecological systems in riv-
ers, maintenance discharge (minimum discharge 
rate) is secured. 
(3) The higher the dam water level, the higher the 
power generating efficiency. The dam water level is, 
therefore, kept as high as possible. 
(4) When the dam water level exceeds the speci-
fied level, overflow (gate discharge to prevent dam 
overflow) is inevitably caused. 

In order to secure high-efficiency plant opera-
tion, it is necessary to set up the water level as high 
as possible to maximize power generation efficien-
cy for (3) while restrictions of (1) and (2) are satis-
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fied. At the same time, overflow must be prevented 
for (4). 

For these reasons, it is necessary to grasp 
future influent rate accurately in order to establish a 
high-efficiency power generating plan. The dam 
catchment area (area occupied by river systems) is, 
however, generally wide, and in addition, mountain 
ranges may be snowbound in winter. In many cases, 
it is therefore difficult to achieve future influent rate 
predictions. 

3 Dam Influent Rate Prediction Model

Fig. 2 shows a dam influent rate prediction 
model. Input data for this prediction model generally 
involves actual data of past-to-present influent rates, 
actual meteorological data obtained in the past to 
present, predicted meteorological data, and sea-
sonal items. The meteorological data input entered 
in the dam influent rate prediction model is consid-
ered to cover the amount of rainfall, temperatures, 
atmospheric pressures, and humidity. This model 
employs the amount of rainfall and temperatures. In 
addition to actual data of present dam influent rate 
data and actual meteorological data, it is now possi-
ble to investigate time-serial trends of each data if 
the past several hours of actual data input is 
acquired. 

For meteorological prediction data, the 
MesoScale Model (MSM) Grid Point Value (GPV)(1) 
is used. For GPV, the atmosphere is sectioned by 
regularly aligned mesh points and forecast meteor-
ological values are obtained at each grid point 
based on various observatory data by using a 
supercomputer. The MSM is a numerical forecast 
model that can manage the coverage of Japan 
proper and its offshore areas. Since this model can 
generate forecast outputs of prediction 8 times a 
day at the intervals of 3 hours and 39 hours ahead 
(51 hours ahead at 0:00 and 12:00), it is suitable for 
meteorological prediction at a time span of several 
hours to one day ahead. This development is for 
Japanese hydropower generation business opera-
tions. Since the purpose of prediction is for the 
acquisition of dam influent data for 48 hours ahead, 
we adopted the MSM for our numerical prediction 
model. It should be noted that the use of the dam 
influent rate prediction model from our R&D activi-
ties is not limited to Japan. It is available throughout 
the world through proper selection from numerical 
prediction models. 

Factors for causing an increase in dam influent 
rate are rainfall and snow melting. An increase in 
the influent rate due to snow melting can be pre-
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This diagram shows an example of business operations when a 
daily power generation plan for 24 hours toward the next day is 
reported at 09:00 to the power utility company. The lapse of time 
goes from upper to lower. In this diagram, an example of an op-
eration plan at a time point of 1/1 09:00 is shown in the upper 
diagram and a plan at a time point of 1/2 09:00 is shown in the 
lower diagram. 

Fig. 1
Outline of Business Operations at a Dam-Type 
Hydropower Plant
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When all data of past influent rates and meteorological informa-
tion are entered in the XGBoost prediction model, the predicted 
dam influent rate of time k (＝ 1, … , 48) can be obtained. 

Fig. 2 Dam Influent Rate Prediction Model
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dicted based on the amount of snowfall in the river 
basin and actual temperature data gained in previ-
ous several hours. It is, however, difficult to accu-
rately grasp actual snow amounts in river basins. 
For our development, we focused on snow melt 
occuring shortly after the snow season. As such, we 
devised an approach by which seasonal items are 
inputted in the dam influent prediction model. Fig. 3 
shows an outline of seasonal items. The seasonal 
items are variables that fluctuate during the period 
of one year. By making the prediction model to 
definitively learn the snow-melting season and other 
periods, it is possible to predict an increase in dam 
influent rate due to the snow melt. 

For the learning of dam influent rate prediction 
model, ensemble methods are used. For this model 

in particular, a development approach called the 
eXtreme Gradient Boosting(2) (“XGBoost” hereafter) 
is used. 

3.1 Ensemble Learning Method
The Ensemble Learning Method is a kind of 

machine learning method. In machine learning, the 
model learns the relationship among data groups 
based on large amounts of input/output data. When 
the unknown input data is put into the model, it out-
puts inference results. In our development, the input 
data is the past dam influent data or meteorological 
data while the output data is the future dam influent 
data. A feature of the ensemble learning method is 
that a high-accuracy learner can be established 
through coordination of multiple weak learners. 
Fig. 4 shows an example of a bugging approach for 
the ensemble learning method. In order to construct 
a model where regression lines are given to the 
data shown on the left, the following steps are exe-
cuted:

(a) Split into different conditions 
(b) Build Weak learners  
(c ) Majority/mean of the weak learners 
In (a), data is split into different samples by mak-
ing sampling with replacement by the bootstrap 
sampling method. In (b), learning is performed 
with a weak learner (comparatively simple learning 
model) for the respective samples split in (a). In 
learning model for a weak learner, a decision tree 
is generally used. In (c), output values of a final 
model are obtained through the processing of 
majority, mean, and total sum of the respective 
outputs from weak learners made under (b). Since 
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The seasonable items are acceptable if they are of a periodic 
function of a one-year cycle. In this case, the seasonal item 1 is 
expressed by a cosine wave and the seasonal item 2 is  
expressed by a sine wave. 

Fig. 3 Outline of Seasonal Items

(a) Split into different conditions
 (subsampling, etc.)

Data (b) Making Weak learner (c) Majority/mean of
 weak learner

Black points are data. This is an example where blue lines of data regression are drawn by two weak learners. 

Fig. 4 Example of Bugging Approach for the Ensemble Learning Method
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computation cost for weak learner making is gen-
erally low, ensemble methods can assure high-
speed and high generalization performance. 

3.2 XGBoost 
In the case of XGBoost, the weak learner is 

made to learn with an algorithm called “boosting” 
which is different from bugging explained in 3.1 
above. Fig. 5 shows an outline of the boosting tech-
nique. By boosting, a learning model is established 
by producing a new weak learner where errors gen-
erated from former weak learners are minimized. In 
addition to this boosting technique, the XGBoost is 
equipped with an algorithm where suppression of 
over-speed learning and overfitting is devised. For 
this reason, performance generalization can be 
obtained even for a region where errors can be eas-
ily caused and the volume of data is small. For our 
development, it is preferable to make it possible to 
accomplish precise restriction when the dam influ-
ent rate becomes high in the case of heavy rain. 
Data of rainy weather, however, is only about 20% of 
the overall data volume and such data tends to 
become smaller in the case of heavy rain. It is, 
therefore, difficult to construct a learning model that 
can make accurate prediction while the amount of 
dam influent is large at the time of heavy rain. If the 
XGBoost is adopted, we can expect accurate pre-
diction even though the dam influent rate is high 
when the volume of data tends to be small. For our 

development, the XGBoost was adopted for ensem-
ble learning. 

4 Numerical Experiments

In our simulation, the effectiveness of the pro-
posed approach for this research is shown. In this 
case, we made a prediction of dam influent rate 
relating to a dam facility in Japan. With the dam 
influent rate prediction model equipped with the 
XGBoost, we entered inputs of actual dam influent 
data, amount of rainfall, and actual meteorological 
data gathered in the previous 12 hours to the pres-
ent time. For meteorological forecast mesh data by 
the MSM, inputs of mesh data of about 34-hours of 
rainfall and values of temperature forecast gathered 
close to the objective dam were entered. The learn-
ing period was set at 1 July 2008 to 31 December 
2016. The verification period was set at 1 January 
2017 to 30 November 2017. 

Figs. 6 to 8 show a comparison of actual  
flowrate values and predicted flowrate values. Fig. 6 
is for rainless days, Fig. 7 is for snow melting days, 
and Fig. 8 is for heavy rainy days of 17.5 mm at a 
moment. Fig. 9 shows actual rainfall values and 
predicted rainfall values by MSM measured in the 
same period for Fig. 8. 

In Fig. 6, the influent rate on a rainless day  
varies from approximately 10 m3/s to 20 m3/s and 
the prediction model makes an accurate forecast. In 
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For a prediction error caused by a weak learner, the creation of another weak learner is repeated to decrease prediction errors. 

Fig. 5 Outline of Boosting Technique 
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Fig. 7, the predicted flowrate shows a good con-
sistency even though the actual flowrate changes 
around more than 100 m3/s due to snow melting. 
Obviously, the seasonal items of the prediction 
model shown in Fig. 2 duly identifies the snow- 
melting season. The occurrence of snow melting is 
estimated based on meteorological data. In Fig. 8, it 
is possible to confirm a sufficient prediction of trends 
to increase the flowrate when heavy rainfall results 
in the rise of the influent level from 10 m3/s to 200 
m3/s, though occasional errors can be seen at the 
time of the rising. Since the MSM achieves an accu-
rate prediction of future rainfall as shown in Fig. 9, it 
is possible to consider that the learning model has 
successfully forecast the correct dam influent rate 
based on the given future rainfall data. 

Table 1 shows the prediction accuracy through-
out the simulation period. The mean absolute error 

of one-day accumulation denotes an index to show 
whether the total amount of influent for a single day 
can be predicted. The prediction accuracy is evalu-
ated based on the predicted dam influent rate, mean 
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The result of prediction in rainless days is shown. The solid line 
indicates actual values of dam influent rate and the dotted line 
shows prediction output values from the dam influent prediction 
model.

Fig. 6
Comparison of Actual Flowrate Values and 
Predicted Flowrate Values: Rainless Days
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The result of prediction at the time of snow melting is shown. The 
solid line indicates actual values of dam influent rate and the 
dotted line shows the prediction output values from the dam in-
fluent prediction model. 

Fig. 7
Comparison of Actual Flowrate Values and 
Predicted Flowrate Values: Snow Melting Days 
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The result of prediction in heavy rainy days is shown. The solid 
line indicates actual values of dam influent rate and the dotted 
line shows prediction output values from the dam influent predic-
tion model. 

Fig. 8
Comparison of Actual Flowrate Values and 
Predicted Flowrate Values: Heavy Rainy Days
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Actual and predicted rainfall values at the time of heavy rain are 
shown. The solid line indicates actual rainfall values and the dot-
ted line shows predicted rainfall values by the MSM.

Fig. 9
Actual Rainfall Values and Predicted Rainfall 
Values: Heavy Rainy Day

Evaluation index Prediction error

Mean absolute error for 24 hours of a day 
measured at the intervals of an hour

10.7％

Mean absolute error for 24 hours of the next 
day measured at the intervals of an hour

13.6％

Mean absolute error of one-day accumula-
tion for a day

7.0％

Mean absolute error of one-day accumula-
tion for the next day 

10.1％

The result of a day and that of the next day are shown. The mean 
absolute error of one-day accumulation means an index to show 
whether the total amount of influent for a single day can be 
predicted. 

Table 1
Prediction Accuracy throughout the Simulation 
Period 
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absolute error of actual values, and 95 percentile※1 
of actual dam influent rate, using the formula: (mean 
absolute error) / (95 percentile value)×100%. Based 
on Table 1, we confirmed that the 24-hour forecast 
error of a day is about 10%, the mean absolute error 
of one-day accumulation of a day is 7%, and that a 
high-accuracy prediction is performed throughout 
the verification period. 

The learning time of the prediction model is 
about 600 seconds. Compared with deep learning 
technology using a neural network that requires 
thousands to tens of thousands of seconds, we can 
declare that our prediction model learning by 
ensemble learning approach assures high-speed 
performance. 

5 Postscript

This paper introduced a high-accuracy dam 
influent rate prediction approach by using a machine 
learning model for the purpose of optimal man-
agement of hydropower generation plants. This 
approach can construct a simulation model without 
any dependence on singular characteristics of river 
systems. Since the learning time for ensemble 

learning is short, this technology can be expected to 
promote a wider application to other river systems. 

Regarding the data of the Mesoscale Model 
Grid Point Value (MSM) used for our development, 
we use the database(3) collected and distributed by 
Research Institute for Sustainable Humanosphere. 

・ All product and company names mentioned in this paper are 

the trademarks and/or service marks of their respective owners.

(Note) 

※1. 95 percentile value: A dose value corresponding to the upper 
5% group when the result of dose computation is placed in the 
order from higher to lower values. 

《References》

(1) Meteorological Business Support Center: MesoScale Model 
Grid Point Value, http://www.jmbsc.or.jp/jp/online/file/f-online10200.
html
(2) Tianqi Chen, Carlos Guestrin: “XGBoost: A scalable tree boosting 
system”, Proceedings of the 22Nd ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, pp.785-
794, ACM, 2016.
(3) Research Institute for Sustainable Humanosphere of Kyoto 
University: Sustainable Humanosphere database: http://database.
rish.kyoto-u.ac.jp


