検証技術・診断技術

アーク観測技術紹介

長 輝通 Terumichi Cho 山村健太 Kenta Yamamura

キーワード 高電圧・大容量化, VCB, VI, 縦磁界電極

真空遮断器(VCB)の高電圧・大容量化を実現するために, 真空インタラプタ(VI)の電極材料物性評価,真空チャンバ内 に縦磁界電極を配置したアーク観測,短絡試験での性能比較を 行ってきた。更なるVI高性能化のためには,遮断現象の定量評 価が必要であり,アーク観測設備に二色放射温度計を新たに導 入した。これにより,電流零点以降の電極表面温度測定ができ るようになり,縦磁界電極の磁界強度とアークエネルギー及び 電極表面溶融状態の関係が明らかとなった。電流遮断時の溶融 状態を低減させるためには,磁界強度によってアークを安定か つ均一に広げることが重要である。

1 まえがき

真空遮断器(VCB)の高電圧・大容量化に向け, 縦磁界電極の基礎的なデータ取得を進めている。縦 磁界電極における磁界強度は,大電流遮断性能を決 定する要因の一つで,その特性を定量評価すること が重要となる。

そこで,従来のアーク観測設備に二色放射温度計 を導入し,発生磁界強度の異なる縦磁界電極を用い て,大電流遮断時のアークエネルギー及び電極表面 温度を測定した。本稿では,比較した特性を紹介 する。

2 縦磁界電極

第1図に縦磁界電極の遮断原理を示す。縦磁界 電極は電流を遮断する際,電極構造によって電極間

第1図縦磁界電極の遮断原理

縦磁界電極の概略構造と原理を示す。

にアークと平行な磁界が発生する。磁力線に電子及 びイオンが拘束されるため,アークが均一に拡散し 電極局部加熱を低減する。この原理によって,大電 流遮断を実現している。

3 試験条件

第2図にアーク観測装置を示す。真空度を約 10⁻⁵Paに維持した真空チャンバ内に銅クロム材料 を採用した縦磁界電極を配置している。縦磁界電極 は観測窓を通して確認でき、ハイスピードカメラと 二色放射温度計でアーク発生時と電流零点以降の電 極表面温度を測定できる。第1表にハイスピード カメラ、第2表に二色温度計の測定性能を示す。

第3図に試験回路を,第4図に電流通電波形及 び遮断器の開極ストロークを示す。試験はR投入 器(MRSW)を投入することで小電流を通電し,供 試器(TO)を開極動作させ,完全開極状態となっ た時点でL投入器(MLSW)を投入して50Hzの交 流半波電流を通電する。遮断電流はコンデンサの充

第2図 アーク観測装置

真空チャンバ及び測定機の概略を示す。

第1表 ハイスピードカメラ性能

試験に使用したハイスピードカメラの性能を示す。

項目	仕様
撮影速度	210,000fps
シャッター速度	1/316,984s
解像度	384 × 160px

第2表 二色温度計性能

試験に使用した二色温度計の性能を示す。

項目	仕様
温度範囲	650∼1800°C
応答速度	0.12ms
波長帯域	1.65~1.75µm
	1.75~2.00µm
検出素子	InGaAs

電電圧で調整する。

第5図に試験に用いた縦磁界電極を,第3表に 条件を示す。縦磁界電極は,直径40mmの銅クロム 電極にコイル(銅)とリード(銅)を銀系ロウ材で ロウ付けして作成した。電極とコイルには3等配の

第3図 試験回路

アーク観測装置の試験回路を示す。

第4図 電流通電波形及び遮断器開閉ストローク 電流通電波形(上段)及び遮断器の開極ストローク波形(下段)を示す。

第5図 縦磁界電極

試験に用いた縦磁界電極を示す。

第3表 縱磁界電極条件

試験に用いた縦磁界電極の条件を示す。

項目	仕様
電極径	<i>φ</i> 40
電極材料	CuCr
スリット本数	3(等配)
磁界強度(3種類)	0.54p.u.
	0.80p.u.
	1.00p.u.

アークエネルギー算出に用いたパラメータを示す。

スリットを加工している。縦磁界強度は、スリット 長を変更することで0.54、0.80、1.00p.u.とした。磁 界強度は、磁界解析で算出した。二色放射温度計は、 第5図に示す点で測定している。磁界解析で磁界 強度が最も強い領域である。

4 アークエネルギー算出方法

第6図にアークエネルギー算出パラメータを示 す。アークエネルギーWの算出方法は式(1)とした。 *varc*:アーク電圧,*i*:電流,*tarc*:交流アーク時間 である。*varc*は式(2)に示すように,測定電圧*vm*から 供試器の抵抗分電圧及び誘導電圧を差し引いた値と した。また*vm*は,供試器の高圧側測定電圧*vD*1及び 低圧側測定電圧*vD2*から式(3)で算出した。

溶融持続時間の定義を示す。

$$v_{arc}(t) = v_m(t) - R_{TO} i(t) - L_{TO} \frac{di(t)}{dt} \quad \dots \dots \dots (2)$$

$$v_m(t) = v_{D1}(t) - v_{D2}(t)$$
(3)

5 溶 融 持 続 時 間 の 定 義

第7図に溶融持続時間の定義を示す。電流零点時刻からアノード表面温度が銅融点相当の1000℃まで下がる時間を溶融持続時間とし、試験結果を比較した。

なお,電流零点時刻より前はアークが発生してお り,温度を正確に測定できない。

6 試験結果

6.1 測定

第8図に測定した波形例を示す。

6.2 アークエネルギー測定比較

第9図に電流波高値とアークエネルギーの関係
 を,第4表にアークエネルギー近似式の比較を,
 第10図に電流波高値のアーク画像比較を示す。

第9図及び第4表から、磁界強度が増加するに つれて、アークエネルギーが減少することが分か

第8図 測定波形例

(a) アーク電圧と(b) 注入エネルギーの測定例を示す。(遮断電流20kApeak)

第9図 電流波高値とアークエネルギーの関係

電流波高値とアークエネルギーの試験結果を示す。

る。これは第10図のアーク画像比較から、磁界が 強いほどアーク形態が安定するためと考える。

6.3 溶融持続時間測定結果

第11図に磁界強度を変更した各縦磁界電極の 溶融持続時間測定結果を,第12図に磁界強度 0.54p.u.の電流波高値アーク画像比較を示す。

第11図に示すように、アークエネルギーが増加 すると溶融持続時間は長くなるが、0.54p.u.の条件で

第4表 アークエネルギー近似式の比較

試験結果からアークエネルギー近似式を算出した。

磁界強度(p.u.)	アークエネルギー近似式 W = Al _{peak} 2 + Bl _{peak}		
	А	В	
0.54	6.442 × 10 ⁻⁶	0.1259	
0.80	5.215 × 10 ⁻⁶	0.1243	
1.00	4.461 × 10 ⁻⁶	0.1240	

(a) 0.54p.u.

(b) 0.80p.u.

(c) 1.00p.u.

 第10図
 電流波高値
 アーク画像比較

 遮断電流20kApeakのアーク画像比較を示す。

第11図 溶融持続時間測定結果

(a) アークが偏った場合

(b) アークが広がった場合

第12図 磁界強度0.54p.u.の電流波高値アーク画像比較 磁界強度0.54p.u.のアーク画像比較を示す。

は,溶融持続時間が傾向から外れ,長くなる結果を 測定した。アーク画像を比較したところ,**第12図** に示すように溶融時間がほかよりも長くなる場合 は,アークが偏り,局所的に集中していることが分 かった。

7 むすび

磁界強度の異なる縦磁界電極を用いて、磁界強度 とアークエネルギーの関係を定量評価した。

また,アーク観測と電流零点後の電極表面温度か ら,アークエネルギーと溶融持続時間は相関関係 にあるが,アークが均一に広がらない場合は電極溶 融時間が増加することを明らかにした。電極溶融 時間の増加は電流遮断性能及び耐電圧性能の低下を 引き起こすこととなる。

今後は、電流零点後に電圧を印加することで絶縁 回復特性を把握し、熱的遮断限界を明らかにして いく。

・本論文に記載されている会社名・製品名などは、それぞれの 会社の商標又は登録商標である。

《執筆者紹介》

長 輝通 Terumichi Cho 先進技術研究所 真空遮断器の基礎研究に従事

山村健太 Kenta Yamamura 製品技術研究所 真空遮断器の製品研究に従事