埋込磁石同期電動機(IPMSM)の 電圧飽和回避制御

竹下隆晴 Takaharu Takeshita 濱田鎮教 Shizunori Hamada 久保 肇 Hajime Kubo 只野裕吾 Yugo Tadano

<u>キーワード</u> IPMSM, トルク制御, インバータ, 電圧飽和

トルク制御システム構成図

自動車用エンジンの代替として試験を行う駆動用ダイナモ メータは、高速回転時でもトルク振動を模擬した加振トルクを 発生させることが求められる。加振トルクで高速なトルク応答 を実現する場合は高い電圧を必要とするが、電圧飽和が発生す ると電流応答が悪化し、指令トルクを模擬できなくなる。同期 電動機は回転数に比例した誘起電圧を発生するため、高速回転 時には誘起電圧が上昇し、電圧飽和やトルク応答の悪化などの 問題点が生じる。

当社は、埋込磁石同期電動機(IPMSM)を用いたダイナモ メータを開発してきた。これを改良し、高回転時におけるトル ク応答を改善する。エンジン加振トルク指令に対して、弱め磁 束制御を応用した電流指令値を導出し、その電圧飽和回避制御 の有効性を実験によって確認した。

1 まえがき

近年,自動車開発の期間短縮や運転性能向上など を背景・目的として,ダイナモメータシステムに要 求されるモータ制御技術が高度化している。エンジ ン代替の駆動モータは,供試体に対して車両搭載時 と同等の負荷を与えて試験する。これにより,エン ジントルクを模擬する駆動モータの電流制御が必要 となる。駆動モータには大容量の埋込磁石同期電動 機(IPMSM)を用いている。

IPMSMはロータ内部に永久磁石を埋め込むこと で突極性が得られ、マグネットトルクのほかにリラ クタンストルクを利用できる。これらのトルクを有 効に利用することで、従来法に比べ損失を抑えた高 効率なモータとして使用できる。しかしIPMSMは 回転数に比例した誘起電圧を発生するため、高速回 転時に誘起電圧が上昇し、インバータが電圧飽和を 引き起こして駆動できなくなる。さらにエンジント ルクを再現する場合,電流の変化量が大きくなるた め大きな電圧が必要となる。従来法である最大トル ク/電流制御(MTPA: Maximum Torque Per Ampere)では電圧飽和が起こりやすく,トルク応 答が悪化する。そのため,弱め磁束制御によって電 圧飽和を回避させる。一方,最大トルク/電圧制御 (MTPV: Maximum Torque Per Voltage)では大 きな電流が必要となり銅損の増加となるため,両者 の方法はトレードオフの関係になる。

本稿では, 瞬時的なエンジントルク指令に対して インバータの電圧飽和を回避したIPMSMの電流 制御法を紹介する。エンジントルク指令値から最大 トルク変化量を算出することで, 電圧ベクトルから 最大電圧を推定する。最大電圧に応じてd軸電流を 低減することで電圧飽和を回避する。また, 実機検 証によって提案制御法の有効性を確認する。

2 トルク制御法

2.1 IPMSMの電流制御法

IPMSMのd軸電圧 v_d , q軸電圧 v_q の電圧方程式 及びトルク τ の式は次式で与えられる。

$$\begin{bmatrix} v_d \\ v_q \end{bmatrix} = \begin{bmatrix} v_{od} \\ v_{oq} \end{bmatrix} + \begin{bmatrix} v_{dt} \\ v_{qt} \end{bmatrix} = \begin{bmatrix} v_{od} \\ v_{oq} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} L_d & 0 \\ 0 & L_q \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix}$$
$$\cdots \cdots (1)$$
$$\begin{bmatrix} v_{od} \\ v_{oq} \end{bmatrix} = R_a \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \begin{bmatrix} 0 & -\omega L_q \\ \omega L_d & 0 \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \begin{bmatrix} 0 \\ \omega K_E \end{bmatrix}$$
$$\cdots \cdots (2)$$
$$\tau = P_n \{K_E + (L_d - L_q) i_d\} i_q \cdots \cdots \cdots (3)$$

ここで、 v_{od} 、 v_{oq} は定常電圧であり、 v_{dt} 、 v_{qt} は過渡 電圧、 P_n は極対数、 K_E は誘起電圧定数である。

第1図に電流制御ブロック図を示す。非干渉制 御はdq軸間での干渉項及び誘起電圧の影響を補償 する。フィードフォワード制御は,モータモデルの 逆関数を用いて電流応答の向上を図る。

2.2 エンジントルク指令

第2図にエンジンモデルのデータトルクτ。とエ ンジントルク指令τ*の波形を示す。データトルクと はエンジンダイナモのお客様が入力するエンジント ルク指令であり、サンプル時間ごとのトルク指令値 である。エンジントルク指令τ*は基本角周波数ωτ と2倍の角周波数2ωτを持つ正弦波と余弦波で構成

第1図 電流制御ブロック図

電流制御系は、PI制御・非干渉制御・フィードフォワード制御から成り 立っている。 され、次式で定義している。

 $\tau^* = A_0 + A_{1s} \sin \omega_\tau t + A_{1c} \cos \omega_\tau t$ $+ A_{2s} \sin 2\omega_\tau t + A_{2c} \cos 2\omega_\tau t \cdots (4)$

平均トルク成分を A_0 とし,各振幅の大きさを A_{1s} , A_{1c} , A_{2s} , A_{2c} としている。これらの値はエンジンダ イナモのお客様が任意に設定し,**第2**図のように エンジントルクの振幅と平均成分が変化する。イン バータのエンジントルク指令値 τ *はこれに追従す る必要がある。

第3図に各係数である A_0 , A_{1s} , A_{1c} , A_{2s} , A_{2c} を 演算するためのエンジントルク振幅及び平均トルク 推定ブロック図を示す。お客様によって与えられる τ_c をフィードバックすることで τ^* を決めている。 $\tau_c と \tau^*$ の偏差となる $\Delta \tau$ をフーリエ変換すること

第 2 図 データトルクとエンジントルク指令

エンジントルクの基本周波数ω_τは、モータ回転数の整数倍であると仮定 し、既知とする。

第 3 図 エンジントルク振幅及び平均トルク推定ブロック図

単位時間ごとのトルク瞬時値をフーリエ変換及び逆フーリエ変換を用いて トルク振幅及び平均トルクを推定する。 で,各周波数成分の振幅を決定できる。各振幅に対 して正弦波・余弦波を乗算することで,時間軸へと 戻しτ*が決まる。

式(4)に示したエンジントルク指令 τ*を三角関数 による合成を用いることで,次式が成立する。

 $\tau^* = A_0 + A_1 \sin(\omega_\tau t + \phi_1) + A_2 \sin(2\omega_\tau t + \phi_2)$(5)

ただし、 A_1 、 A_2 、 ϕ_1 、 ϕ_2 は以下で表される。

ここで,式(5)に含まれる基本波を基準として計算 する。基本波を基準とし,位相 $\omega_{\tau}t + \phi_1 = \theta$ とおく と式(5)は次式に置き換えられる。

 $\tau^* = A_0 + A_1 \sin \theta + A_2 \sin (2\theta - \phi_a)$ ………(8) ただし、 ϕ_a は以下で表される。

 $\phi_a = 2\phi_1 - \phi_2 \quad \dots \quad (9)$

3 電圧飽和回避法

2項で得られたエンジントルク指令 τ*はトルク の変化量が大きいため,過渡電圧が大きくなる。こ の過渡電圧と高速回転時における高い誘起電圧に よってインバータの電圧飽和を引き起こしやすくな る。そこで,変化するエンジントルク指令値から最 大電圧指令値を算出して電圧飽和量を推定する。推 定された電圧飽和量に対してd軸電流を低減するこ とで電圧飽和を回避する。

第 4 図にエンジントルクの電圧軌跡を示す。エ ンジン加振トルクを実現する際の電圧軌跡は,定常 電圧ベクトルと定常電圧直線に対して直交する過渡 電圧ベクトルとの和となる。エンジン加振トルクは 変化量が大きいため,電流変化量も大きくなる。電 流変化量が大きい場合,式(1)にある過渡電圧の影響 が大きくなるため,過渡電圧が最大となる位相を最 大電圧と仮定する。そのため瞬時的なエンジントル ク指令式から変化量が最大となる位相*θ*_mを計算で

第4図 エンジントルクの電圧軌跡

電圧軌跡は定常電圧ベクトルと過渡電圧ベクトルのベクトル和によって表 される。

算出する(1)。

まず,求めた位相 θ_m で瞬時的なエンジントルク 指令の変化量が最大となる過渡電圧 v_{dt} , v_{qt} を,式(1) に電流指令を代入して求める。

次に,エンジントルクを実現する電圧軌跡から最 大電圧を推定する。式(2)にエンジントルク指令値を 代入したときの定常電圧軌跡は,第4図に示すよ うに直線を描く。一方,式(1)にある過渡項にエンジ ントルク指令値を代入したときの過渡電圧ベクトル は,定常電圧直線に対して直交するように出力され る。この定常電圧と過渡電圧のベクトルから最大電 圧 (*v_{dmax}*, *v_{qmax})を算出する。*

求めた最大電圧の大きさとインバータ電圧最大 値 V_{max}の差である推定電圧飽和量△Vは、次式で求 められる。

推定飽和量*ΔV*に応じてd軸平均電流指令値i_{ds}を 低減する。このようにして電圧飽和を回避した電流 指令を生成する。**第5**図に得られたエンジントル クデータから電流指令を算出するまでの電流指令生 成フローチャートを示す。求められた瞬時的なエン ジントルク指令値から最大電圧を推定する。それに

第5図 電流指令生成フローチャート

電圧飽和を判定し、飽和する場合には回避するためには軸電流を低減する。

第 1 表 モータ定数及び実験条件

実験に使用したIPMSMの定数及びエンジントルク再現時の実験条件を 示す。

項目	変数	值
電機子抵抗	Ra	0.602 Ω
起電力定数	Ke	0.952V/(rad/s)
制御周期	Ts	100 <i>µ</i> s
d軸インダクタンス	L _d	5.63mH
q軸インダクタンス	La	14.3mH
極対数	Pn	4
モータ回転速度	ω	1800min-1
トルク振動周波数	f _τ	60Hz
キャリア周波数	fs	10,000Hz

応じた推定電圧飽和量から低減するべき*i*_{ds}を決定 する。低減した*i*_{ds}を中心とした電流指令を決めるこ とで電圧飽和を引き起こさないエンジントルクを実 現する。

4 実験結果

実験によって,紹介する電圧飽和回避制御の有効 性を確認する。第1表にモータ定数及び実験条件 を示す。実験で用いたデータトルク τ_c はエンジンモ デルのアクセルを一定時間後に全開にしている場合 を想定している。そのためエンジントルクの平均ト ルク A_0 振幅 A_{1s} , A_{1c} , A_{2s} , A_{2c} が途中で変化する。

第6図にエンジントルク再現時の実験波形を、第7図にエンジントルク変化後の電圧軌跡を示す。

第6図 エンジントルク再現時の実験波形

データトルクからトルク指令を推定し、電圧飽和を回避しながらトルク制 御を実施している。

第7図 エンジントルク変化後の電圧軌跡

エンジントルク再現時の電圧軌跡は、最大電圧Vmaxの範囲内に存在する。

第6図ではτはエンジントルク指令値通りの値を 出力していることが分かる。さらに,τ*は第3図 で示したトルク推定ブロック図によって,τ。に追従 していることも確認できる。縦の点線以降ではトル クの振幅や平均トルクが変化している。振幅が大き くなると最大電圧も変化する。変化後は電圧飽和を 引き起こしやすくなるため、これを回避するように i_{ds}が推定電圧飽和量に応じて変化している。*i_{ds}*の低 減で電圧飽和を引き起こしていないことが確認でき る。第7図からトルク指令値の変化後も電圧飽和 を回避していることが確認できる。瞬時的なエンジ ントルク指令値における最大電圧を推定すること で、電圧飽和を引き起こさないトルク制御が実現で きた。

5 むすび

IPMSMの電流制御で,高速回転時ではエンジン トルクを模擬する際にMTPA制御を行うと電圧飽和 を引き起こす。本稿では,瞬時的なエンジントルク 指令に対して,最大変化量を算出して電圧飽和量を 推定する制御方法を紹介した。推定された電圧飽和 量に応じてd軸電流を低減することで電圧飽和を回 避しつつ,エンジントルクを実現する。実験によっ て提案する制御方法が有効であることを確認した。

・本論文に記載されている会社名・製品名などは、それぞれの 会社の商標又は登録商標である。

《参考文献》

(1) Ryohei Matsuura, Takaharu Takeshita, Shizunori Hamada, Hajime Kubo, Yugo Tadano : "Current Control of IPMSM without Voltage Saturation for Engine Torque Simulator", International Conference on Electrical Machines and Systems, pp.1127-1132, 2018

《執筆者紹介》

只野裕吾 Yugo Tadano 基盤技術研究所 システム制御技術に関する研究開発に従事