新形4極タービン発電機

太田伸也 Shinya Ota 村井和也 Kazuya Murai 石橋太郎 Taro Ishibashi

キーワード 高効率化, 軽量化, 解析

新形4極タービン発電機

当社は、タービン発電機に長年の経験と実績を持っており、 国内外のお客様からご愛顧をいただいている。

タービン発電機は、一般に蒸気又はガスタービンで駆動され、産業用あるいは電力事業用に、常用・非常用又はピーク カット用電源として広く使用されている。

近年,当社発電機製作範囲で,タービン発電機は4極機の採 用を拡大する方向にある。そこで,当社4極タービン発電機の 競争力強化のために,回転子構造を円筒形から突極形に変更 し,効率向上及び軽量化を実現した。

1 まえがき

当社は、これまで多くのタービン発電機を製作し てきたが、更なる市場拡大を目指し、新形4極ター ビン発電機を開発した。従来機に対し、効率の向上 と軽量化を図るため、最適設計・熱流体解析・機械 強度解析を用いて新形機を設計した。本稿では、試 作機で実施した設計・解析の手法について紹介する。

2 4 極 タービン発 電機

当社は、これまで10~45MVAの4極タービン発 電機で、回転子構造として積層鉄心を用いた円筒形 構造を採用してきた。しかしながら、円筒形は回転 子外径の遠心力による出力増加の制約や高効率化の 限界などの問題があり、それらの解決のため、塊状 突極回転子を用いた4極タービン発電機を開発し た。第1表に突極形回転子と円筒形回転子の比較 を,第1図に突極形と円筒形の損失比率を示す。

円筒形の巻線は絶縁電線を分割した溝にそれぞ れ同心巻としているのに対し,突極形は一極に集中 的に電線を巻けるため占積率が良く,銅量を増やす ことができる。このため界磁損失を大幅に低減で き,効率が向上する。また電線を直接冷却でき,さ らに冷却フィンを設けることもできることから,冷 却効率も格段に向上し,出力を増加することができ る。今回製作した試作機で効率98.3%を達成し,質 量は従来形発電機に対し約30%の低減を実現した。 **第2表**に試作機の定格を示す。

2.1 磁極形状の最適化

突極磁極は,塊状素材から機械加工で要求寸法に 仕上げるため,加工の容易さが求められる。加えて, 磁極表面の曲率及び磁極幅は,発電機の性能評価の

第1表 突極形回転子と円筒形回転子の比較

突極形回転子と円筒形回転子の比較を示す。突極形にすることで,効率向 上・冷却効率向上などの効果がある。

項目	円筒形	突極形
回転子構成	珪素鋼板積層	塊状(十字シャフト)
効率	相対的に突極に比べて低	円筒に比べ0.4~0.5程
	()	度高い
短絡比	0.5程度	0.5程度
リアクタンス	過渡リアクタンスが小さい	過渡リアクタンスが大きい
回転子損失	界磁回路損が比較的大き い	銅量多く, 界磁回路損が 比較的小さい
界磁巻線	絶縁電線を同心巻き,鉄 心と一体でレジン含浸	薄い銅板同士のロー付け 必要
回転子冷却	絶縁電線で,間接冷却の ため冷えにくい	裸導体で,直接冷却のた め冷えやすい
風損	ダクトの影響を受け大	円筒形の約半分
危険速度 (軸剛性)	小さい(積層鉄心)	大きい(十字シャフト)
回転子構造	界磁巻線 主軸 回転子鉄心	界磁巻線 主軸

円筒形⇒突極形での損失改善(@48.75MVA)

第1図 突極形と円筒形の損失比率

突極形と円筒形の損失の比較を示す。突極形にした場合,界磁損と機械損の減少で円筒形の約80%の損失となる。

一つである電圧波形及び界磁電流の増減に大きく影響する。そこでFEM(Finite Element Method)解 析によって,磁極形状の最適化を行った。判定基準 は電圧波形のひずみ率THD(Total Harmonic

第2表 試作機定格

試作機定格を示す。

定格出力	48,750kVA
定格電圧	11,000V
定格周波数	50Hz
力率	0.8
極数	4
耐熱クラス	155 (F)
効率	98.3%
適用規格	IEC60034

第2図 誘起電圧とTHD

誘起電圧VとTHDを示す。誘起電圧が大きいほど界磁電流が小さいこと を表している。

Distortion)と巻線温度・効率に影響を与える界磁 電流の大きさを用いた。解析モデルに与える界磁電 流は一定とし、電機子巻線の誘起電圧で必要界磁電 流の大小を判断している。

第2図に誘起電圧とTHDの計算例を,第3図 に磁極パラメータを示す。最適化解析に使用したパ ラメータは、磁極幅Wと磁極曲率Rである。誘起電 圧の大きさ(界磁電流の大きさ)が大きいほどTHD も大きくなることが確認できた。第3表に無負荷界 磁電流とTHDの解析結果と実測値の比較を示す。

2.2 磁極表面損

磁極表面は塊状磁極を採用しているため渦電流 が流れる。ここで磁極はボルトで固定されているた め,ボルトの大きさ・個数・配置によって渦電流の 経路が変わり,渦電流損の大きさに影響を与えるこ

第3図 磁極パラメータ

磁極パラメータを示す。磁極の厚みは強度上の制約,磁極ボディの幅は磁 気飽和によって決定し,寸法は固定である。

第3表 解析結果と実測値

解析結果と実測値を示す。良好な結果が得られた。

	解析值	実測値
無負荷界磁電流(A)	267	271
THD (%)	0.4	0.4

とが考えられた。そこでFEM解析で損失の大きさ を確認したところ,ボルトの差異による渦電流損の 大きさに差がないことを確認でき,ボルトの大きさ や個数は発電機のオーバスピード,ボルト締めの作 業性などによって決定した。

解析に使用したモデルは1極分,軸方向1/16モデ ルでボルト間の対称性を考慮した。第4図にボルト サイズ M48,第5図にM80の過電流損分布を示す。 第6図に示すように,ボルトサイズによる渦電流損 の差は約5%の範囲に収まることを確認した。

2.3 その他構造部材の損失

現在,FEM解析の精度は格段に向上している。 実測の確認が難しい漂遊負荷損の一部であるコイル 端部周りの構造部材の損失をFEM解析によって確 認し,材質の選定に役立てた。第7図にコイル端部 の解析モデルを,第4表に主な部材の各材質によ る渦電流損の差異を示す。一例として,風案内の渦 電流損は材質による大きな差異が認められないた め,電磁力による振動や部材価格などを考慮し,材 質を決定した。

第6図 ボルトサイズによる渦電流損の比較

ボルトサイズによる渦電流損の比較を示す。比較の結果, 渦電流損の大き さに差異がないことを確認した。

時間(ms)

第7図 コイル端部解析モデル

コイル端部解析モデルを示す。風案内の材質を変化させ、渦電流損の差異 を確認した。

第4表 コイル端部の主な部材と材質による渦電流損差異

コイル端部の主な部材と材質による渦電流損差異を示す。材質による渦電 流損の大きな差異は認められなかった。

	SS400	FRP	SUS	アルミ
風案内(kW)	1.44	0	0.14	0.62
締金(kW)	2.14	—	—	—

第8図 通風解析モデル

発電機通風解析用のモデルを示す。FEM解析では、フルメッシュ化に よって約3億の要素数とした。

以上のようにFEM解析によって各部の寸法及び 使用材料による損失などの差異を明確にし、効率改 善と特性の向上を試みた。試作機の特性算定及び各 部材の選定では、FEM解析を多用しながら従来式 との比較を十分に行い、とりわけ測定が難しい漂遊 負荷損の特定に大いに役立った。

2.4 通風・温度解析

第8回に通風解析モデルを,第9回に通風解析 流線モデルと回転子非定常解析の例を示す。要素数 は約3億メッシュで,回転子を実際に回転させた流れ の状態を模擬する,いわゆる非定常解析を行ってい る。発電機内部の冷却風流れは非常に複雑である が,フルメッシュとすることで内部の流れを簡易的 に可視化することができる。そのため,冷却効果の 改善に寄与する部材形状を視覚的に把握することが でき,最適な冷却構造を実現した。

(a) 通風解析流線モデル

(b) 回転子非定常解析の例

第9図 通風解析流線モデルと回転子非定常解析の例

通風解析流線モデルと回転子非定常解析の例を示す。解析では、回転子を 回転させた状態を模擬し、実機の流れに近い状態をシミュレーション した。

2.5 軽量化

鉄心体格の最適化と各部材強度や補強構造を見 直し,出力45MVAクラスの発電機で,当社従来形 発電機に対し約30%の質量の低減を図った。質量の 低減による発電機の剛性低下を考慮し,振動抑制に 効果的な補強の入れ方を様々なパターンでシミュ レーションした。

具体的には,FEM解析で回転子を実際に定格速度 で回転させた状態を模擬し,軸受部での振動応答解 析を実施した。第10図に応答解析例を示す。なお, 試作機でも軸受振動に問題ないことを確認した。

第10図 応答解析の例

回転子に残存アンバランスを与え,定格速度で回転させた際の軸受振動応 答の解析例を示す。

第11図 突極形回転子外観

突極形回転子の外観を示す。コイルはシャフトにはめ込まれ, ポール シューとボルトで固定保持される。

2.6 突極形回転子

第11図に突極形回転子の構造を示す。突極形回 転子の大きな特長は、シャフトにはめ込んだコイル をポールシューとともに回転子外周側からボルトで 固定する構造にある。このボルトはコイルとポール シューの遠心力による大きな応力を負担するため、 特に発電機の運転停止の繰り返しによる疲労破壊に ついての検討が重要である。

発電機の運転停止で,ボルトに加わる応力が大き く変動することが疲労破壊に大きな影響を与える が,これを低減するにはボルトの締付力を可能な限 り大きくすることが有効である。

試作機では,実際にボルトを締め付けた後,ボル ト軸力を測定し設計値通りの軸力が確保されている

第12図 ボルト伸び超音波測定 ボルト締め付け前後のボルト全長を超音波で測定し、軸力に換算している。

か全数確認している。具体的には、ボルトを特殊加 工し、締め付け前後でのボルト全長を超音波測定器 で実測して軸力を確認した。第12図にボルト伸び超 音波測定の様子を示す。

3 むすび

試作機による検証試験を終えて, 高効率・軽量化 を実現した。今後も常に新技術や最新の解析技術を 取り入れ, 性能や信頼性の高い製品を提供していけ るように努力を続ける所存である。

・本論文に記載されている会社名・製品名などは、それぞれの 会社の商標又は登録商標である。

《執筆者紹介》

Shinya Ota 回転機システム工場 回転機の設計・開発に従事

村井和也 Kazuya Murai 回転機システム工場 回転機の設計・開発に従事

石橋太郎 Taro Ishibashi 発電技術部 発電システムのエンジニアリング業務に従事