銀マイグレーションの腐食環境影響 に関する研究

山本隆之 Takayuki Yamamoto 小出和典 Kazunori Koide 毛利俊介 Shunsuke Mori

キーワード エレクトロケミカルマイグレーション, 腐食性ガス環境, 信頼性試験

概要

模擬基板及び試験基本回路構成

半導体デバイスなどの電気部品の信頼性に関わる現象の一つ に、エレクトロケミカルマイグレーション(ECM)がある。特 にECMが成長しやすいとされる銀が、一部の半導体デバイス に使用されている。当社製品は、設置先で意図せず低濃度の硫 化水素のような腐食性ガスにさらされる場合もある。通常の社 内評価試験は、一般的な大気を想定した試験環境で行っている ため、腐食性ガスは含んでいない。このため、銀ECMに硫化 水素が及ぼす影響は考慮されていない。

そこで、硫化酸素が銀ECMの成長に対する影響を検証した。 本検証では、硫化水素濃度が高くなるほど銀ECMの成長が阻 害される結果となった。得られた知見を製品開発に生かし、高 信頼性製品を提供している。

1 まえがき

半導体デバイスなどの電気部品の信頼性に関わ る現象の一つに,エレクトロケミカルマイグレー ション(ECM)がある。ECMは金属種によって発 生しやすいものがあり,一般的に銀はECMが起こ りやすい金属である。一部の半導体デバイスでは, 端子のメッキに銀が用いられている。

当社は、電力製品・電子機器・情報機器などを 様々なお客様に納入している。そのため製品の設置 環境も多様で、意図せず微量の硫化水素にさらされ ることがある。一般的なECM試験は、不純物のな い高温高湿環境下で行われるため、硫化水素のよう な腐食性ガス環境下では異なる挙動となることが考 えられる。本稿では、環境因子として硫化水素を対 象とし、複数濃度条件下で銀ECMに及ぼす影響を 検証したので、その概要を紹介する。

2 硫化水素環境下での銀ECM評価

第1図に本試験の概略を示す。硫化水素が銀 ECMに及ぼす影響を調査するため、大気環境及び 硫化水素環境下での銀ECMの形成過程を比較評価

第1図 硫化水素環境での銀ECM評価試験概略

硫化水素濃度をパラメータとして,硫化水素が銀ECM形成に及ぼす影響の調査を目的とする。

第2図ガス腐食試験装置

硫化水素環境の構築は、腐食性ガス雰囲気下で最高温度85℃までの高 温・高湿試験ができるガス腐食試験装置を用いた。

した。本試験では、模擬基板上の電極間に純水を滴 下後通電することによって銀ECMの形成を誘発さ せた。

2.1 銀ECM試験方法

銀ECM形成試験は、銅電極上に銀めっき処理を 施した模擬基板を用いて実施した。基板上の9.5mm 極間に純水を滴下後に、電極間に定電圧を印加して 銀ECMの形成を観察した。

銀ECMによる短絡有無は、形状観察及び極間抵 抗の測定によって判定した。また、銀ECMなどの 形成物の組成は、電子線マイクロアナライザー法 (EPMA)・X線光電子分光法(XPS)で評価した。

2.2 硫化水素環境の構築

第2図にガス腐食試験装置(スガ試験機「GS-UVS」)の外観を示す。本装置で硫化水素環境を構築した。銀ECM形成試験は、ガス腐食試験装置を

第1表 試験条件

硫化水素環境の条件は、試験装置槽内を温度40℃・湿度80%で固定し、 硫化水素ガス濃度をパラメータとして6水準に設定した。

試験条件	温度(℃)	湿度(%)	硫化水素濃度(ppb)
1	40	80	0
2	40	80	10
3	40	80	50
(4)	40	80	100
(5)	40	80	800
6	40	80	2500

第3図 各硫化水素濃度における銀 ECM の経時観察結果

硫化水素濃度の上昇に伴い, ECM成長速度は鈍化する兆候が見られた。 高濃度 2500ppbでは, 銀ECMとは異なり陽極側からの白色膜状の析出 物も確認された。

温度40℃・湿度80%の環境に設定し、硫化水素濃度 を因子として、第1表に示す全6条件で実施した。

3 試験結果

第3図に通電開始から銀ECM形成に至るまでの 経時観察結果を濃度条件別に示す。また,第4図に 同試験での極間抵抗値の経時変化を示す。銀ECM の形成は,全ての濃度で共通して陰極側から樹枝状 に広がっているものの,硫化水素濃度の上昇に伴い 形成速度低下の傾向が確認された。特に硫化水素ガ ス濃度2500ppbでの試験では,銀ECMの形成は抑 制されており,その一方で陽極側から白色膜の形成 が確認できた。

この白色膜の構成元素について, 第5図にEPMA 法による銀及び硫黄を対象としたマッピング分析結 果を示す。白色膜は,銀及び硫黄が類似に分布した 形成物であることが明らかで,硫化銀系形成物であ ると推察される。

第6図にXPS法を用いた深さ方向に対する元素 構成比の分析結果を示す。測定深さに対する各元素

第4図 各硫化水素濃度における極間抵抗値の経時変化

硫化水素濃度の上昇に伴い、短絡時間が大きくなる傾向が見られる。高濃 度2500ppbでは短絡に至っていない。

第5図 高濃度域での白色膜の形成とEPMA分析結果

高濃度の硫化水素環境では、陽極からの白色膜形成が支配的である。 EPMA分析結果は、白色膜が銀の硫化物であることを示唆している。 の構成比から, 膜厚はおおむね5nm程度であるこ とが推察され, 銀と硫黄の含有率の比率から硫化銀 として析出した膜であると判断した。

第7回に本試験の結果から考察される硫化水素 環境下での銀ECMの形成モデルを示す。一般に, 銀ECM反応は基板表面上の正負極間に滴下された 水成分を経路として,陽極から溶出した銀イオンが 陰極で析出することで進行する。しかし本試験の結 果から,硫化水素環境では銀イオンが溶出した水成 分に硫化水素が反応し,硫化銀が析出されることが 明らかになった。このため,陰極へ到達し銀ECM として析出する銀イオンの相対数は減少し,阻害方 向に働いたものと考察される。

第6図 白色膜のXPS深さ方向分析結果

XPS深さ方向分析によって取得した元素構成比率の推移から, 白色膜は 膜厚5nm程度の硫化銀であることが推察される。

①-②の残イオンが析出

第7図 硫化水素環境下での銀ECMの形成モデル

銀ECMの形成に対して,硫化水素は阻害要因であるとして考察,モデル 化した。

4 むすび

今回,環境因子の一つである硫化水素の濃度が銀 ECMに及ぼす影響を検証し,模擬した条件では, 銀ECMの加速因子とならないことを確認した。そ のほかの環境因子との複合的な作用がないか慎重に 検討を重ねながら,本結果を今後の信頼性評価の技 術向上に活用していく。また,腐食生成物の分析で 得られた知見は,製品故障の調査に生かし,腐食環 境による故障の原因究明や製品の設置環境の改善提 案に役立てることができる。これらの取り組みを通 じて,高信頼性製品の開発,製品故障リスクの低減 に貢献していく所存である。

・本論文に記載されている会社名・製品名などは、それぞれの 会社の商標又は登録商標である。

《執筆者紹介》

山本隆之 Takayuki Yamamoto 基盤技術研究所 電子デバイスの品質評価及び信頼性評価業務に従事

小出和典 Kazunori Koide 基盤技術研究所 電子デバイスの品質評価及び信頼性評価業務に従事

毛利俊介 Shunsuke Mori 先進技術研究所

先進研究に関する R&D 戦略立案業務に従事