タービン発電機の損失低減技術

倉澤拓也 Takuya Kurasawa 石井亮太 Ryota Ishii

キーワード 発電機,損失,電磁界解析

有限要素法による電磁界解析例

環境問題・省エネへの関心が高まり,発電機には高効率化が 求められている。

当社は、発電機の高効率化実現のため、無負荷鉄損・漂遊負 荷損の低減に「骨太開発」で力を入れて取り組んできた。これ らの損失は、実測値から分離することは難しく、損失の予測が 重要となる。今回の取り組みでは、3次元有限要素法による電 磁界解析を用いることで、損失発生箇所を把握し、低減対策を 検討した。本検討による損失低減方法を盛り込んだ試作機を製 作し、無負荷鉄損と漂遊負荷損の合計値で約20%の損失低減 を実現している。

1 まえがき

環境問題・省エネへの関心が高まり,発電機の高 効率化が求められている。これに応えて,当社は 2014年から回転子構造を円筒形から突極形に変更 した新形4極タービン発電機を販売している。

更に一層の効率向上・省エネ効果を得るため, 「骨太開発」で4極タービン発電機の損失低減につ いて検討した。本稿では,「骨太開発」で実施した 3次元磁界解析による損失の低減結果を紹介する。

2 損失解析

発電機の高効率化には,発電機を構成する各部位 に発生する損失を正確に推定することが非常に重要 となる。

特に無負荷鉄損・漂遊負荷損は、機器全体につい

て測定することはできるが,これを各部位に発生す る損失に分離することは難しく,損失の予測が重要 となる。ここで,無負荷鉄損はその大部分が固定子 鉄心で発生すると予測されるが,漂遊負荷損は発電 機を構成する部品の様々な部分で発生するため,正 確な推定が非常に難しい。

従来は類似機の実測値に対して,経験式を用いて 損失を推定してきた。この方法では,構造部材の細 かい形状変更などに対応できず,各部位の損失が不 明確である。そのため損失低減は,電磁鋼板のグ レード変更による無負荷鉄損の削減など,部分的な 対策にとどまっていた。

近年,計算機の目覚ましい進歩によって,3次元 有限要素法による大規模な損失解析が実用化されて いる。損失解析では,損失の分布を可視化できるた め,損失発生箇所の特定に極めて有効である。今回 の損失低減方法では,3次元有限要素法による損失 解析を用いて,損失の発生箇所の特定及び低減対策 を検討することとした。

2.1 損失解析の精度向上

損失解析で損失の発生箇所を特定し,低減の対策 箇所と方法を決定するため,解析の精度が非常に重 要となる。

従来は,損失が大きいと想定される箇所に絞って 損失解析を行い,傾向を確認するにとどまり,実測 値と比較できないなど不十分な点があった。

今回,解析対象を機器全体に広げて損失分布を把 握し,損失と実測値を比較して解析の精度を検証し た。ここではいくつかの解析例を紹介する。

(1) 固定子鉄心 第1図に固定子鉄心に流入する 磁束の概略を示す。従来,固定子鉄心の損失は,面 内方向を流れる磁束による損失の検討にとどまって いた。固定子鉄心の端部や通風ダクト部では,鉄心 の積層面に対して垂直方向に流入する磁束が発生す る。面内方向の磁束による損失は,薄厚の電磁鋼板 を積層することで渦電流を分断して抑制している が,垂直方向の磁束は損失を抑制できないため,大 きな損失が発生する。このため,鉄心端部及び通風 ダクト間の損失解析を行う必要がある。

第2図に固定子鉄心の部分解析モデルを示す。 ここでは,鉄心端部及び通風ダクト間を模擬した部 分モデルで解析することで,解析精度を向上した。

第1図 固定子鉄心に流入する磁束の概略

固定子鉄心に流入する磁束は、面内方向に流入する磁束と積層面に垂直方 向に流入する磁束とが存在する。 (2)回転子の磁極表面 発電機の構造を円筒形か ら突極形に変更した際に,回転子には塊状磁極を採 用している。塊状磁極の場合,積層鉄心とは異なり 渦電流の分断効果がないため,磁極表面に発生する 損失は大きくなる。第3回に磁極表面の解析モデル を示す。従来は解析モデルの規模が大きく,解析に 非常に時間を要するため,ボルトの配置ごとに部分 モデルを作成し,各モデルの解析値を合成して求め ていた。今回は解析時間短縮のため高並列計算を使 用し,磁極の1/2モデルで解析した。第4回に磁極 表面の解析結果を示す。部分モデルでの計算では, 1/2よりも損失が少なく計算されることが分かる。

前述の解析以外にも以下のような解析を別途実 施している。

第2図 固定子鉄心の部分解析モデル

固定子鉄心の部分解析モデルの抜粋を示す。(a)に固定子鉄心の端部,(b) に通風ダクト間とそれぞれ別途模擬をして解析を行っている。

(a) 部分モデル

(b) 1/2モデル

第3図 磁極表面の解析モデル

磁極表面の部分解析モデルと1/2モデルを示す。各モデルで解析を実施し、差異を確認した。

第4図 磁極表面の解析結果

(a) に損失解析結果,(b) にはジュール損失密度のコンター図を示す。コ ンター図はジュール損失密度が小から大に変化するにつれて,表示色が紫 から赤に反映される。

(1) 固定子巻線(渦電流損·循環電流損)

(2) そのほかの構造部材(フレーム・ダクトピース など)

2.2 部分検証

実際に発電機を製作する工程で,製造上の要因が 損失に影響を及ぼすことがある。この製造要因で発 生する損失は,解析だけでは求められない部分が多 く,別途部分検証して結果を求めた。ここでは部分 検証した事例を紹介する。

固定子鉄心に用いられる電磁鋼板は,打ち抜き加 工で製造されるため,打ち抜き面付近がひずみ,残 留応力が残る。電磁鋼板は,応力がかかると特性が 変化し,磁気特性の劣化や鉄損が増加する性質を持 つ。打ち抜き時のひずみによる損失増加は,解析か ら求めることが困難なため,基礎実験によって検証 した。

打ち抜き時のひずみによる影響検証の試料を示す。試料は本図以外にも 5~100mmの間で複数の幅で試料を作成し、検証した。

第5図に打ち抜き時の影響検証用試料を示す。 幅の異なる5mmから100mmの間で複数の単板試 料を用意し,各試料でB-H曲線・鉄損曲線などを 測定した。

第6図に打ち抜き時のひずみによる影響検証結 果を示す。打ち抜き幅が狭い,すなわち応力を受け ている面の割合が大きいほど,打ち抜きの影響を受 けて磁気特性の劣化,鉄損が増加する結果が得られ た。検証結果から得られたデータを使用して製造要 因で増加する損失を考慮し,解析精度を向上した。

ほかにも固定子鉄心は大きさの制約から周方向に 分割したものを積み重ねて製造するため,分割した 電磁鋼板の間にセグメントギャップと呼ばれる隙間 が生じる。鉄心を通る磁束は,セグメントギャップ を避けて積層方向の電磁鋼板を通過するため,電磁 鋼板に対して垂直に磁束が流入し,損失が増加する。 この部分は解析での評価が難しいため,簡易モデル を製作し,固定子鉄心の積層による影響を別途検証 することで解析精度を確認した。第7図に固定子 鉄心の積層による影響検証用試料を示す。

2.3 実測結果との比較

第8回に従来構造における解析結果と実測結果 を示す。グラフは実測値を100%とした場合の割合 で示す。当初,解析値と実測値の比較では,3割程

第6図 打ち抜き時のひずみによる影響検証結果

打ち抜き時のひずみによる影響検証から得たB-H曲線と鉄損曲線を示 す。打ち抜きの影響を受けて磁気特性の劣化・鉄損の増加を確認した。

第7図 固定子鉄心の積層による影響検証用試料

固定子鉄心の積層による影響検証用の試料を示す。鉄心の積層方法を変え て、検証を実施し、その影響を評価した。

度の差が見られたが、解析精度の向上によって、実 測値に近い解析結果が得られるようになった。

実際には、構造変更や使用材料の変更などで従来 構造と異なる場合には、それが解析精度に影響を及 ぼす可能性がある。しかし、解析精度は損失削減の 傾向を見るには十分であると考え、解析を用いて低 減箇所及び対策の検討を進めた。

従来構造における解析値と実測値について,解析精度の検討前後での結果 を示す。解析精度向上の取り組みによって実測の数値に近づいている。

3 損失低減検討

第9図に従来構造における無負荷鉄損・漂遊負荷損の内訳を示す。解析結果から,(1)固定子鉄心, (2)巻線内損失,(3)風案内,(4)磁極表面,(5)締金の順に損失の割合が大きいことが分かる。この結果から,損失の大きい箇所の低減対策を,それぞれ解析を用いて検討した。ここでは,損失低減対策の具体例を紹介する。

損失低減の検討例として,固定子鉄心端部の面内 渦電流損失の低減を紹介する。第10図に固定子鉄 心の解析による損失内訳を示す。無負荷時の固定子 鉄心端部の損失は,固定子鉄心全体の16%と損失に 占める割合が大きい。固定子鉄心端部は,前述のと おり固定子鉄心面に垂直に流入する磁束が存在し, 損失増加の要因となる。無負荷鉄損は,回転子の磁 極からの漏れ磁束によるものが主となる。したがっ て,磁極からの漏れ磁束を低減できれば,損失も低 減できるため,回転子の磁極からの漏れ磁束を低減 する方法を検討した。

第11図に検討前後の磁極端部の形状を示す。従 来は加工の容易さの観点から、磁極端部の構造は平 面に切り落とす形状を採用していた。今回の検討で は、磁極端部の形状を曲面に変更した。また、新た に磁極表面との間に段差を設ける形状とした。曲面 形状への変更及び段差の追加は、ともに鉄心端部と

第9図 従来構造における無負荷鉄損・漂遊負荷損の内訳

従来構造における無負荷鉄損・漂遊負荷損の各内訳を示す。グラフは従来構造の解析値を100%とした場合の割合で示す。

の空隙を従来よりも大きくすることで,磁気抵抗の 増加を図り,漏れ磁束の抑制を狙ったものである。

第12図に損失低減検討前後の磁極端部解析結果 を示す。グラフは従来構造の解析値を100%とした 場合の割合で示す。従来構造の損失値を解析結果か らも,新構造では鉄心端部の面内渦損が従来よりも 30%程度減少していることが確認できる。

このほかにも損失の大きい部位で,同様に損失の 低減方法を検討し,損失の低減を図った。

4 実測結果との比較

「骨太開発」で検討した損失低減対策を取り入れ た試作機を製作し,実機で検証した。実機では各箇 所での損失計測が困難であるため,固定子鉄心に磁

第12図 損失低減検討前後の磁極端部解析結果

損失低減検討前後の磁極端部解析結果を示す。グラフは従来構造の解析値 を100%とした場合の割合で示す。

東密度計測用のサーチコイル及びホール素子を配置 し,解析の妥当性を確認した。以下に,試作機によ る実測結果を紹介する。

第13図に損失低減検討前後での設計値と実測結 果を示す。損失低減対策の効果として,従来構造に 比べて無負荷鉄損と漂遊負荷損の合計値で約20% の損失低減を確認した。 解析の妥当性確認のために実施した磁束密度計 測に関して,ホール素子の測定結果を紹介する。 第14図にホール素子の測定位置を示す。ホール素 子は固定子鉄心の端部及び固定子鉄心の内径側にそ れぞれ配置し、測定した。第15図に磁束密度の解 析結果と実測結果を示す。無負荷時・三相短絡時の

第13図 損失低減検討前後での設計値と実測結果

損失低減検討前後での設計値と実測値の比較を示す。グラフ内の損失値 は、無負荷鉄損と漂遊負荷損の合計値を示す。

第14図 ホール素子の測定位置

ホール素子の測定位置を示す。ホール素子は、固定子鉄心の端部及び固定 子鉄心の内径側にそれぞれ配置した。

磁束密度計測の解析結果と実測結果を示す。固定子鉄心端部に取り付けたホール素子による磁束密度測定と同一箇所での解析結果を示す。

双方で解析値と実測値は良く一致した結果を示して おり,鉄心端部に流入する磁束を解析によって模擬 できていると考えられる。他の箇所で計測している ホール素子,サーチコイルによる磁束密度も本結果 同様に解析と実測で良く一致した結果を得た。損失 の主要因である磁束を解析で模擬できていることか ら,解析による損失の傾向把握は十分に実用可能で あると考えられる。

5 むすび

今回,骨太開発の中で実施してきた損失低減の検 討で,従来に比べ無負荷鉄損+漂遊負荷損の合計値 で約20%の損失低減を実現した。今後も常に最新の 解析技術を取り入れ,精度の向上を図るとともに, 更なる高効率を実現できるように努力を続ける所存 である。

・本論文に記載されている会社名・製品名などは、それぞれの 会社の商標又は登録商標である。

《執筆者紹介》

倉澤拓也 Takuya Kurasawa EV事業部開発部 回転機の設計・開発に従事

回転機システム工場 回転機の設計・開発に従事